Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 186: 114460, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38325632

RESUMO

The use of propylene glycol (PG) in food and other applications is widespread, and some estimates of dietary exposure to PG approach or exceed the Acceptable Daily Intake (ADI) of 25 mg/kg bw-day. The current ADI for PG applies a cumulative uncertainty factor of 100, which includes factors of 10 for both interspecies and intraspecies differences. Available toxicology studies and human data, however, indicate a plausible mode of action (MoA) that would support a chemical-specific adjustment factor (CSAF) of 1 for interspecies toxicodynamic differences, reducing the total uncertainty factor from 100 to 40. The MoA involves an increase in serum PG concentrations after metabolic saturation, leading to serum hyperosmolarity, which can ultimately cause hemolytic changes and red blood cell damage. Therefore, the species similarities in toxicodynamic response for this critical effect could support increasing the ADI from 25 to 62.5 mg/kg bw-day, applicable to both children and adults.


Assuntos
Alimentos , Propilenoglicol , Adulto , Criança , Humanos , Nível de Efeito Adverso não Observado , Propilenoglicol/toxicidade , Incerteza , Medição de Risco
2.
Environ Int ; 74: 258-73, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25454243

RESUMO

The inhalation unit risk (IUR) that currently exists in the United States Environmental Protection Agency's (US EPA's) Integrated Risk Information System was developed in 1984 based on studies examining the relationship between respiratory cancer and arsenic exposure in copper smelters from two US locations: the copper smelter in Anaconda, Montana, and the American Smelting And Refining COmpany (ASARCO) smelter in Tacoma, Washington. Since US EPA last conducted its assessment, additional data have become available from epidemiology and mechanistic studies. In addition, the California Air Resources Board, Texas Commission of Environmental Quality, and Dutch Expert Committee on Occupational Safety have all conducted new risk assessments. All three analyses, which calculated IURs based on respiratory/lung cancer mortality, generated IURs that are lower (i.e., less restrictive) than the current US EPA value of 4.3×10(-3) (µg/m(3))(-1). The IURs developed by these agencies, which vary more than 20-fold, are based on somewhat different studies and use different methodologies to address uncertainties in the underlying datasets. Despite these differences, all were developed based on a cumulative exposure metric assuming a low-dose linear dose-response relationship. In this paper, we contrast and compare the analyses conducted by these agencies and critically evaluate strengths and limitations inherent in the data and methodologies used to develop quantitative risk estimates. In addition, we consider how these data could be best used to assess risk at much lower levels of arsenic in air, such as those experienced by the general public. Given that the mode of action for arsenic supports a threshold effect, and epidemiological evidence suggests that the arsenic concentration in air is a reliable predictor of lung/respiratory cancer risk, we developed a quantitative cancer risk analysis using a nonlinear threshold model. Applying a nonlinear model to occupational data, we established points of departure based on both cumulative exposure (µg/m(3)-years) to arsenic and arsenic concentration (µg/m(3)) via inhalation. Using these values, one can assess the lifetime risk of respiratory cancer mortality associated with ambient air concentrations of arsenic for the general US population.


Assuntos
Poluentes Atmosféricos/toxicidade , Arsênio/toxicidade , Exposição por Inalação , Neoplasias do Sistema Respiratório/mortalidade , Poluentes Atmosféricos/análise , Arsênio/análise , Humanos , Neoplasias Pulmonares/mortalidade , Medição de Risco/métodos , Fumar , Estados Unidos , United States Environmental Protection Agency
3.
Sci Total Environ ; 496: 299-313, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25089691

RESUMO

Arsenic (As) can exist in the environment in several different forms, each having unique chemical characteristics that influence its toxicity and potential for human and ecological exposure. Within the last decade or so, the focus on speciated As (both the inorganic and organic forms) and its potential toxicity has led to an increased availability of data on speciated As in different food types. To gain an understanding of these developments and the current science, we evaluated the state of knowledge regarding As speciation in food and calculated the average levels of several species of As measured in food. Because inorganic arsenic (inAs) is considered the most toxicologically important form of As, we focused our analysis on papers presenting information on total inAs and speciated inAs (inAs(3+) or inAs(5+)). We also evaluated speciated As forms (e.g., monomethylarsonic and dimethylarsinic acid) when presented with inAs information. Publications were drawn from the peer-reviewed literature and reports by authoritative health agencies. While a great deal of speciation data were identified, including over 6500 unique inAs data points, unclear study methodology and inconsistencies between studies introduced uncertainty into the analysis of these data. Despite these limitations, our analysis demonstrates that inAs in foods can vary widely by type and even by sample, with mean inAs concentrations ranging from undetectable (in milk) to 11,000 µg/kg (in seaweed/algae). We found a high percentage of non-measurable As in many food types, suggesting that the limits of detection of speciated As must be considered to accurately estimate dietary As exposure. The applicability of our analysis is limited by the inconsistencies and uncertainties in the available data; calculations of inAs dietary intake should be tailored to the study population of interest and should consider study quality.


Assuntos
Arsênio/análise , Dieta/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Poluentes Ambientais/análise , Contaminação de Alimentos/análise , Contaminação de Alimentos/estatística & dados numéricos , Humanos
4.
Crit Rev Toxicol ; 43(9): 711-52, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24040994

RESUMO

Inorganic arsenic (iAs) at high exposures is a human carcinogen, affecting mainly the urinary bladder, lung and skin. We present an assessment of the mode of action (MOA) of iAs's carcinogenicity based on the United States Environmental Protection Agency/International Programme on Chemical Safety (USEPA/IPCS) framework, focusing primarily on bladder cancer. Evidence is presented for a MOA involving formation of reactive trivalent metabolites interacting with critical cellular sulfhydryl groups, leading to cytotoxicity and regenerative cell proliferation. Metabolism, kinetics, cell transport, and reaction with specific proteins play a critical role in producing the effects at the cellular level, regardless of cell type, whether urothelium, lung epithelium or epidermis. The cytotoxicity induced by iAs results in non-cancer toxicities, and the regenerative cell proliferation enhances development of epithelial cancers. In other tissues, such as vascular endothelium, different toxicities develop, not cancer. Evidence supporting this MOA comes from in vitro investigations on animal and human cells, from animal models, and from epidemiological studies. This MOA implies a non-linear, threshold dose-response relationship for both non-cancer and cancer end points. The no effect levels in animal models (approximately 1 ppm of water or diet) and in vitro (>0.1 µM trivalent arsenicals) are strikingly consistent. Cancer effects of iAs in humans generally are not observed below exposures of 100-150 ppb in drinking water: below these exposures, human urine concentrations of trivalent metabolites are generally below 0.1 µM, a concentration not associated with bladder cell cytotoxicity in in vitro or animal models. Environmental exposures to iAs in most of the United States do not approach this threshold.


Assuntos
Arsênio/toxicidade , Carcinógenos/toxicidade , Neoplasias da Bexiga Urinária/induzido quimicamente , Animais , Arsênio/farmacologia , Proliferação de Células , Água Potável , Exposição Ambiental , Humanos , Estados Unidos , Neoplasias da Bexiga Urinária/epidemiologia
5.
J Air Waste Manag Assoc ; 62(1): 2-17, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22393805

RESUMO

Accurate measurement of arsenic (As) in air is critical to providing a more robust understanding of arsenic exposures and associated human health risks. Although there is extensive information available on total arsenic in air, less is known on the relative contribution of each arsenic species. To address this data gap, the authors conducted an in-depth review of available information on speciated arsenic in air. The evaluation included the type of species measured and the relative abundance, as well as an analysis of the limitations of current analytical methods. Despite inherent differences in the procedures, most techniques effectively separated arsenic species in the air samples. Common analytical techniques such as inductively coupled plasma mass spectrometry (ICP-MS) and/or hydride generation (HG)- or quartz furnace (GF)-atomic absorption spectrometry (AAS) were used for arsenic measurement in the extracts, and provided some of the most sensitive detection limits. The current analysis demonstrated that, despite limited comparability among studies due to differences in seasonal factors, study duration, sample collection methods, and analytical methods, research conducted to date is adequate to show that arsenic in air is mainly in the inorganic form. Reported average concentrations of As(III) and As(V) ranged up to 7.4 and 10.4 ng/m3, respectively, with As(V) being more prevalent than As(III) in most studies. Concentrations of the organic methylated arsenic compounds are negligible (in the pg/m3 range). However because of the variability in study methods and measurement methodology, the authors were unable to determine the variation in arsenic composition as a function of source or particulate matter (PM) fraction. In this work, the authors include the implications of arsenic speciation in air on potential exposure and risks. The authors conclude that it is important to synchronize sample collection, preparation, and analytical techniques in order to generate data more useful for arsenic inhalation risk assessment, and a more robust documentation of quality assurance/quality control (QA/QC) protocols is necessary to ensure accuracy, precision, representativeness, and comparability.


Assuntos
Poluentes Atmosféricos/química , Arsênio/química , Monitoramento Ambiental/métodos , Animais , Humanos , Medição de Risco
6.
Toxicol Sci ; 123(2): 305-32, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21750349

RESUMO

The metalloid arsenic is a natural environmental contaminant to which humans are routinely exposed in food, water, air, and soil. Arsenic has a long history of use as a homicidal agent, but in the past 100 years arsenic, has been used as a pesticide, a chemotherapeutic agent and a constituent of consumer products. In some areas of the world, high levels of arsenic are naturally present in drinking water and are a toxicological concern. There are several structural forms and oxidation states of arsenic because it forms alloys with metals and covalent bonds with hydrogen, oxygen, carbon, and other elements. Environmentally relevant forms of arsenic are inorganic and organic existing in the trivalent or pentavalent state. Metabolism of arsenic, catalyzed by arsenic (+3 oxidation state) methyltransferase, is a sequential process of reduction from pentavalency to trivalency followed by oxidative methylation back to pentavalency. Trivalent arsenic is generally more toxicologically potent than pentavalent arsenic. Acute effects of arsenic range from gastrointestinal distress to death. Depending on the dose, chronic arsenic exposure may affect several major organ systems. A major concern of ingested arsenic is cancer, primarily of skin, bladder, and lung. The mode of action of arsenic for its disease endpoints is currently under study. Two key areas are the interaction of trivalent arsenicals with sulfur in proteins and the ability of arsenic to generate oxidative stress. With advances in technology and the recent development of animal models for arsenic carcinogenicity, understanding of the toxicology of arsenic will continue to improve.


Assuntos
Intoxicação por Arsênico/história , Arsenicais/história , Carcinógenos Ambientais/história , Exposição Ambiental/história , Toxicologia/história , Animais , Arsenicais/efeitos adversos , Carcinógenos Ambientais/toxicidade , Exposição Ambiental/efeitos adversos , História do Século XX , História do Século XXI , Humanos
7.
Int J Environ Res Public Health ; 8(6): 2020-73, 2011 06.
Artigo em Inglês | MEDLINE | ID: mdl-21776216

RESUMO

Regulatory agencies are under increased pressure to consider broader public health concerns that extend to multiple pollutant exposures, multiple exposure pathways, and vulnerable populations. Specifically, cumulative risk assessment initiatives have stressed the importance of considering both chemical and non-chemical stressors, such as socioeconomic status (SES) and related psychosocial stress, in evaluating health risks. The integration of non-chemical stressors into a cumulative risk assessment framework has been largely driven by evidence of health disparities across different segments of society that may also bear a disproportionate risk from chemical exposures. This review will discuss current efforts to advance the field of cumulative risk assessment, highlighting some of the major challenges, discussed within the construct of the traditional risk assessment paradigm. Additionally, we present a summary of studies of potential interactions between social stressors and air pollutants on health as an example of current research that supports the incorporation of non-chemical stressors into risk assessment. The results from these studies, while suggestive of possible interactions, are mixed and hindered by inconsistent application of social stress indicators. Overall, while there have been significant advances, further developments across all of the risk assessment stages (i.e., hazard identification, exposure assessment, dose-response, and risk characterization) are necessary to provide a scientific basis for regulatory actions and effective community interventions, particularly when considering non-chemical stressors. A better understanding of the biological underpinnings of social stress on disease and implications for chemical-based dose-response relationships is needed. Furthermore, when considering non-chemical stressors, an appropriate metric, or series of metrics, for risk characterization is also needed. Cumulative risk assessment research will benefit from coordination of information from several different scientific disciplines, including, for example, toxicology, epidemiology, nutrition, neurotoxicology, and the social sciences.


Assuntos
Poluição do Ar , Saúde Pública , Estresse Psicológico/complicações , Experimentação Animal , Animais , Feminino , Humanos , Masculino , Medição de Risco/métodos , Classe Social
11.
Crit Rev Toxicol ; 36(5): 387-457, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16954066

RESUMO

There is controversy over whether low doses of bisphenol A (BPA, CAS no. 80-05-7) cause reproductive and developmental effects in humans. We update the 2004 weight-of-evidence assessment of an expert panel convened by Harvard's Center for Risk Analysis by critically evaluating over 50 additional studies published between April 2002 and February 2006 that examine in vivo reproductive and developmental toxicity in mammals at doses

Assuntos
Fenóis/farmacologia , Reprodução/efeitos dos fármacos , Medição de Risco/métodos , Animais , Compostos Benzidrílicos , Relação Dose-Resposta a Droga , Monitoramento Ambiental/métodos , Humanos , Fenóis/toxicidade , Reprodução/fisiologia , Medição de Risco/normas , Medição de Risco/tendências
12.
Crit Rev Toxicol ; 36(2): 99-133, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16736939

RESUMO

Monomethylarsonic acid (MMA(V)) and dimethylarsinic acid (DMA(V)) are active ingredients in pesticidal products used mainly for weed control. MMA(V) and DMA(V) are also metabolites of inorganic arsenic, formed intracellularly, primarily in liver cells in a metabolic process of repeated reductions and oxidative methylations. Inorganic arsenic is a known human carcinogen, inducing tumors of the skin, urinary bladder, and lung. However, a good animal model has not yet been found. Although the metabolic process of inorganic arsenic appears to enhance the excretion of arsenic from the body, it also involves formation of methylated compounds of trivalent arsenic as intermediates. Trivalent arsenicals (whether inorganic or organic) are highly reactive compounds that can cause cytotoxicity and indirect genotoxicity in vitro. DMA(V) was found to be a bladder carcinogen only in rats and only when administered in the diet or drinking water at high doses. It was negative in a two-year bioassay in mice. MMA(V) was negative in 2-year bioassays in rats and mice. The mode of action for DMA(V)-induced bladder cancer in rats appears to not involve DNA reactivity, but rather involves cytotoxicity with consequent regenerative proliferation, ultimately leading to the formation of carcinoma. This critical review responds to the question of whether DMA(V)-induced bladder cancer in rats can be extrapolated to humans, based on detailed comparisons between inorganic and organic arsenicals, including their metabolism and disposition in various animal species. The further metabolism and disposition of MMA(V) and DMA(V) formed endogenously during the metabolism of inorganic arsenic is different from the metabolism and disposition of MMA(V) and DMA(V) from exogenous exposure. The trivalent arsenicals that are cytotoxic and indirectly genotoxic in vitro are hardly formed in an organism exposed to MMA(V) or DMA(V) because of poor cellular uptake and limited metabolism of the ingested compounds. Furthermore, the evidence strongly supports a nonlinear dose-response relationship for the biologic processes involved in the carcinogenicity of arsenicals. Based on an overall review of the evidence, using a margin-of-exposure approach for MMA(V) and DMA(V) risk assessment is appropriate. At anticipated environmental exposures to MMA(V) and DMA(V), there is not likely to be a carcinogenic risk to humans.


Assuntos
Intoxicação por Arsênico , Arsenicais , Ácido Cacodílico , Carcinógenos , Animais , Intoxicação por Arsênico/etiologia , Intoxicação por Arsênico/metabolismo , Arsenicais/metabolismo , Arsenicais/farmacocinética , Ácido Cacodílico/metabolismo , Ácido Cacodílico/farmacocinética , Ácido Cacodílico/toxicidade , Testes de Carcinogenicidade , Carcinógenos/metabolismo , Carcinógenos/farmacocinética , Carcinógenos/toxicidade , Humanos , Metilação , Testes de Mutagenicidade , Medição de Risco , Roedores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...